JaParaPat: A Large-Scale Japanese-English Parallel Patent Application Corpus

Abstract

We constructed JaParaPat (Japanese-English Parallel Patent Application Corpus), a bilingual corpus of more than 300 million Japanese-English sentence pairs from patent applications published in Japan and the United States from 2000 to 2021. We obtained the publication of unexamined patent applications from the Japan Patent Office (JPO) and the United States Patent and Trademark Office (USPTO). We also obtained patent family information from the DOCDB, that is a bibliographic database maintained by the European Patent Office (EPO). We extracted approximately 1.4M Japanese-English document pairs, which are translations of each other based on the patent families, and extracted about 350M sentence pairs from the document pairs using a translation-based sentence alignment method whose initial translation model is bootstrapped from a dictionary-based sentence alignment. We experimentally improved the accuracy of the patent translations by 20 bleu points by adding more than 300M sentence pairs obtained from patent applications to 22M sentence pairs obtained from the web.

Publication
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Add the full text or supplementary notes for the publication here using Markdown formatting.